Блок питания из китайских блоков. Самодельный блок питания на готовых модулях

Я много смотрю видео по ремонту различной электроники и часто видео начинается с фразы "подключаем плату к ЛБП и...".
В общем ЛБП штука полезная и крутая, вот только стоит как крыло самолета, да и не нужно мне для поделок точности в доли миливольта, достаточно заменить ворох китайских БП сомнительного качества, и иметь возможность не боясь что-либо сжечь определить сколько нужно питания прибору с потеряным БП, подключаем и повышаем напряжение пока не заработает (Роутеры, свичи, ноутбуки), да и так называемый "Поиск неисправности методом ЛБП" тоже удобная штука (это когда на плате есть КЗ но какой из тысячи SMD элементов пробило хрен поймешь, к входам цепляется ЛБП с ограничением по току 1А и на ощупь ищется горячий элемент - нагрев = пробой).

Но из за жабы я не мог себе позволить такую роскошь, но ползая по Pikabu набрел на интересный пост в котором написано как из говна и палок китайских модулей соброать БП своей мечты.
Поковырявшись еще на эту тему я нашел еще кучу видео о том как такое чудо собирать Раз Два .
Собрать такую поделку может любой, да и по стоимости не так уж и дорого по сравнению с готовыми решениями.
Кстати есть целый альбом где народ хвастается своими поделками.
Назаказывал всего и начал ждать.

Основой послужил импульсный БП 24V 6A (такойже как и в паяльной станции, но о ней в следующий раз)

Регулировка напряжения и тока пойдет через вот такой вот преобразователь - ограничитель.

Ну и индикатор до 100 вольт.

В принципе этого достаточно чтобы схема работала, но я решил сделать полноценный прибоор и докупил еще:

Раземы питания под кабель "восьмерку"

Разьмемы под "Бананы" на лицевую панель и 10K многооборотные резисторы для плавной регулировки.
А также нашел в ближайшем строймаге сверла, болтики, гаечки, термоклей и выдрал из старого системника CD привод.

Для начала собрал все на столе и протестировал, схема не сложная, брал ее




Я в курсе что это скриншоты с ютуба, но жутко лень скачивать видео и вырезать оттуда кадры, суть от этого не поменяется, а найти исходники картинок сейчас не смог.

Распиновка моего индикатора нашлась в гугле.


Собрал и подключил лампочку для нагрузки, работает, нужно собирать в корпус, в качестве корпуса у меня выступает старый CD привод (наверное еще и рабочий, но думаю этому стандарту пора на покой) привод старый, потому метал толстый и прочный, лицевые панели из заглушек из системника.

Прикинул в корпусе что и куда ляжет, и пошла сборка.

Разметил места под компоненты, просверлили отверстия, покрасил коркус из балона и вставил болты.

Под все элементы приклеил пластик от упаковки наушников чтобы избежать возможное КЗ на корпус, а под DC-DC преобразователи для питания USB и охлаждения еще положил термопрокладку (зделав вырез в пластике под нее, предварительно срезав все высупающие ножки, саму термопрокладку взял из привода, она охлаждала драйвер двигателя).

Изнутри накрутил по одной гайке и сверху вырезал шайбочку из пластикового контейнера, чтобы поднять палты над корпусом.

Все провода припаивал так как зажимам веры нет, могут послабится и начать грется.













Для продува самых горячих элементов (Регулятор напряжения) установил в боковую стенку 2 40мм 12В вентилятора, поскольку БП греется не все время а только под нагрузкой, постоянно слушать вой не самых тихиз вентиляторов не очень хочется (да, брал самые дешевые вентеляторы, и шумят они сильно) для управления охлаждением заказал вот такой модуль контроля температуры, штука простая и супер полезная, можно как охлаждать так и нагревать, настраивается просто Вот инструкция .

Выставил примерно 40 градусов, как самую горячую точку взял радиатор преобразователя.

Дабы не гонять лишний воздух выставил на преобразователе питания охлаждения порядка 8 вольт.
В итоге получилось нечто такое, внутри места навалом, можно и какой-нибуть нагрузочный резистор добавить.

Уже под финальный вид заказал крутилки, пришлось срезать 5мм вала резистора и подложить по 2 пластиковые шайбы с внутренней стороны чтобы ручки стали вплотную к корпусу.



И того имеем вполне годный БП, с дополнительным выходом на USB который может дать 3А для зарядки планшета.

Вот так БП выглядит уже на резиновых ножках (3M Bumpon Самоклейка) в паре с паяльной станцией.



Я доволен результатом, получился вполне мощный БП с плавной регулировкой и в то же время легкий и портативный, я порой работаю на выезде и таскать за собой фабричный ЛБП с тороидальным трансформатором вообще не кайф, а тут вполне легко помещается в рюкзак.

О том как я делал паяльную станцию раскажу в следующий раз.

Я уже делал пару обзоров подобной штучки (см. фото). Те девайсы заказывал не для себя, для знакомых. Удобный прибор для самодельной зарядки, и не только. Я тоже позавидовал и решил заказать уже для себя. Заказал не только вольтамперметр, но и самый дешёвый вольтметр. Решил собрать блок питания для своих самоделок. Что из них поставить определился только после того, как собрал изделие полностью. Наверняка найдутся люди, кому интересно.
Заказал 11ноября. Была небольшая скидка. Хотя итак цена невысокая.
Посылка шла больше двух месяцев. Продавец дал левый трек от Wedo Express. Но всё же посылка дошла и всё работает. Формально никаких претензий нет.
Так как именно этот девайс и решил вживить в свой блок питания, то расскажу про него чуть подробнее.
Приборчик пришёл в стандартном полиэтиленовом пакете, «пропупыренном» изнутри.


В данный момент товар недоступен. Но это некритично. На Али сейчас много предложений от продавцов с хорошим рейтингом. Причём, цена неуклонно снижается.
Девайс был дополнительно запаян в антистатический пакет.

Внутри собственно прибор и провода с разъёмами.


Разъёмы с ключом. Наоборот не вставить.

Размеры просто миниатюрные.

Смотрим, что написано на странице продавца.

Мой перевод с корректировками:
-Измеряемое напряжение: 0-100В
-Напряжение питания схемы: 4,5-30В
-Минимальное разрешение (В): 0,01В
-Ток потребления: 15мА
-Измеряемый ток: 0,03-10А
-Минимальное разрешение (А): 0,01А
Всё тоже самое, но очень кратко, сбоку изделия.


Сразу разобрал и заметил, что незначительных деталей не хватает.


А вот в предыдущих модулях это место было занято конденсатором.

Но и цена у них отличалась в бОльшую сторону.
Все модули похожи как близнецы-братья. Опыт подключения тоже имеется. Мелкий разъём предназначен для запитки схемы. Кстати, при напряжении ниже 4В синий индикатор становится практически невидим. Поэтому следуем техническим характеристикам устройства, менее 4,5В не подаём. Если хотите с помощью этого девайса измерять напряжения ниже 4В, необходимо запитывать схему от отдельного источника через «разъём с тонкими проводами».
Ток потребления устройства 15мА (при питании от 9В «кроны»).
Разъём с тремя толстыми проводами – измерительный.


Есть два регулятора точности показаний (IR и VR). На фото всё понятно. Резисторы стрёмные. Поэтому часто крутить не рекомендую (сломаете). Красные провода – это выводы для напряжения, синий для тока, чёрные – «общие» (соединены между собой). Цвета проводов соответствуют цвету свечения индикатора, не запутаетесь.
Головная микросхема без названия. Оно когда-то было, но его уничтожили.


А теперь проверю точность показаний при помощи образцовой установки П320. Подал на вход калиброванные напряжения 2В, 5В, 10В, 12В 20В, 30В. Изначально прибор занижал на одну десятую вольта на некоторых пределах. Погрешность несущественная. Но я подстроил под себя.


Видно, что показывает практически идеально. Подстраивал правым резистором (VR). При вращении подстроечника по часовой стрелке добавляет, при вращении против – уменьшает показания.
Теперь посмотрю, как измеряет силу тока. Запитываю схему от 9В (отдельно) и подаю образцовый ток с установки П321


Минимальный порог, с которого начинает правильно измерять ток 30мА.
Как видим, ток измеряет достаточно точно, поэтому крутить подгоночный резистор не буду. Прибор измеряет правильно и при токах больше 10А, но при этом начинает нагреваться шунт. Скорее всего, ограничение по току именно по этой причине.


При токе 10А тоже долго гонять не рекомендую.
Более детальные результаты калибровки свёл в таблицу.

Приборчик мне понравился. Но недостатки имеются.
1.Надписи V и A нанесены краской, поэтому в темноте видны не будут.
2.Прибор измеряет ток только в одном направлении.
Хотел бы обратить внимание на то, что казалось бы одни и те же приборы, но от разных продавцов, могут в корне отличаться друг от друга. Будьте внимательны.
На своих страницах продавцы частенько публикуют неправильные схемы подключения. В данном случае претензий нет. Вот только немного её (схему) изменил на более понятную глазу.

С этим прибором, по-моему, всё понятно. Теперь расскажу про второй девайс, про вольтметр.
Заказывал в тот же день, но у другого продавца:

Покупал за US $1.19. Даже при сегодняшнем курсе – смешные деньги. Так как в итоге поставил не этот прибор, пройдусь по нему вкратце. При тех же габаритах цифры намного крупнее, что естественно.

У этого прибора нет ни одного подстроечного элемента. Поэтому можно использовать только в том виде, в каком прислали. Будем надеяться на китайскую добросовестность. Но я проверю.
Установка та же самая П320.

Более подробно в виде таблицы.


Этот вольтметр хоть и оказался в несколько раз дешевле вольамперметра, но его функционал меня не устроил. Он не измеряет ток. А напряжение питания совмещено с измерительными цепями. Поэтому ниже 2,6В не измеряет.
Оба девайса имеют абсолютно одинаковые габариты. Поэтому заменить один другим в своей самоделке – дело минутное.


Я решил собрать блок питания на более универсальном вольтамперметре. Приборы недорогие. Нагрузки на бюджет никакой не несут. Вольтметр пока полежит в запасе. Главное, чтоб прибор был хороший, а применение всегда найдётся. Как раз из запасника и достал недостающие компоненты для блока питания.
У меня без дела уже несколько лет лежал вот такой набор самоделкина.

Схема простая, но надёжная.

Комплектность проверять бессмысленно, уж много времени прошло, претензии предъявлять поздно. Но вроде всё на месте.

Подстроечный резистор (комплектный) слишком стрёмный. Использовать его не вижу смысла. Остальное всё сгодится.
Все недостатки линейных стабилизаторов я знаю. Городить что-то более достойное у меня нет ни времени, ни желания, ни возможности. Если потребуется более мощный блок питания с высоким КПД, тогда и подумаю. А пока будет то, что сделал.
Сначала я спаял плату стабилизатора.
На работе нашёл подходящий корпус.
Перемотал вторичку торроидального транса на 25В.


Подобрал мощный радиатор для транзистора. Всё это засунул в корпус.
Но одним из самых важных элементов схемы является переменный резистор. Я взял многооборотный типа СП5-39Б. Точность выходного напряжения наивысочайшая.


Вот что получилось.


Немного неказистый, но основная задача выполнена. Все электрические части я от себя защитил, себя тоже защитил от электрических частей:)
Осталось немного «подретушировать». Покрашу корпус из баллончика и сделаю лицевую панель более привлекательной.
На этом всё. Удачи!

Довольно часто приходится, на время тестирования, запитывать различные поделки или устройства. И пользоваться аккумуляторами, подбирая соответствующее напряжение, стало уже не в радость. Потому решил собрать регулируемый блок питания. Из нескольких вариантов которые пришли в голову, а менно: переделать из компьютерного ATX блока питания, или собрать линейный, или приобрести KIT набор, или собрать из готовых модулей - я выбрал последнее.

Данный вариант сборки мне приглянулся из-за нетребовательных познаний в облати электроники, скоростью сборки, и в случае чего, быстрой замены или добавления какого-либо из модулей. Общая стоимость всех комплектующих вышла около $15, а мощность в итоге получилась ~100 Ватт, при максимальном выходном напряжении 23В.

Для создания данного регулируемого блока питания понадобится:

  1. Импульсный блок питания 24В 4А
  2. Понижающий преобразователь на XL4015 4-38В в 1.25-36В 5А
  3. Вольт-амперметр 3 или 4 символьный
  4. Два понижающих преобразователя на LM2596 3-40В в 1.3-35В
  5. Два потенциометра 10К и ручки к ним
  6. Два терминала под бананы
  7. Кнопка вкл/выкл и разъем под питание 220В
  8. Вентилятор 12В, в моем случае слимовый на 80мм
  9. Корпус, какой угодно
  10. Стоечки и болтики для крепления плат
  11. Провода, я использовал от умершего блока питания ATX.

После нахождения и приобретения всех комплектующих приступаем к сборке по схеме ниже. По ней у нас получится регулируемый блок питания с изменением напряжения от 1.25В до 23В и ограничением тока до 5А, плюс дополнительная возможность зарядки устройств через порты USB, потребляемое количество силы тока, которых, будет отображаться на В-А метре.

Предварительно размечаем и вырезаем отверстия под вольт-амперметр, ручки потенциометров, терминалы, выходы USB на лицевой стороне корпуса.

В виде площадки для крепления модулей используем кусок пластика. Он защитит от нежелаемого короткого замыкания на корпус.

Размечаем и сверлим расположение отверстий плат, после чего вкручиваем стойки.

Прикручиваем пластиковую площадку к корпусу.

Выпаиваем на блоке питания клемму, и впаиваем по три провода на + и -, зараннее отрезаной длины. Одна пара пойдет на основной преобразователь, вторая на преобразователь для питания вентилятора и вольт-амперметра, третья на преобразователь для выходов USB.

Устанавливаем разъем питания 220В и кнопку вкл/выкл. Подпаиваем провода.

Прикручиваем блок питания и подключаем к клемме провода 220В.

С основным источником питания разобрались, теперь переходим к главному преобразователю.

Выпаиваем клеммы и подстроечные резисторы.

Припаиваем провода к потенциометрам, отвечающим за регулировку напряжения и тока, и к преобразователю.

Подпаиваем толстый красный провод от В-А метра и выходной плюс от основного пробразователя к выходной плюсовой клемме.

Готовим USB выход. Соединяем дата + и - у каждого USB отдельно, чтобы подключаемое устройство могло заряжаться, а не синхронизироваться. Припаиваем провода к запаралеленным + и - контактам питания. Провода лучше взять потолще.

Припаиваем желтый провод от В-А метра и минусовой от USB-выходов к выходной минусовой клемме.

Провода питания вентилятора и В-А метра подключаем к выходам дополнительного преобразователя. Для вентилятора можно собрать терморегулятор (схема ниже). Понадобится: силовой MOSFET транзистор (N канальный) (его я достал из обвязки питания процессора на материнской плате), подстроечник 10 кОм, сенсор температуры NTC с сопротивлением 10 кОм (термистор) (его достал из сломанного блока питания ATX). Термистор крепим термоклеем к микросхеме основного преобразователя, или к радиатору на этой микросхеме. Подстроечником настраиваем на определенную температуру срабатывания вентилятора, например, 40 градусов.

Подпаиваем к выходному плюсу другого, дополнительного преобразователя плюс выходов USB.

Берем одну пару проводов из блока питания и подпаиваем на вход основного преобразователя, потом вторую - на вход доп. преобразователя для USB, для обеспечения входящего напряжения.

Прикручиваем вентилятор с решеткой.

Припаиваем третью пару проводов из блока питания к доп. преобразователю для вентилятора и В-А метра. Прикручиваем все к площадке.

Подключаем провода к выходным клеммам.

Прикручиваем потенциометры на лицевую сторону корпуса.

Крепим USB-выходы. Для надежной фиксации было сделано П-образное крепление.

Настраиваем выходные напряжения на доп. преобразователях: на 5.3В, с учетом падения напряжения при подключении нагрузки к USB, и на 12В.

Стягиваем провода для аккуратного внутреннего вида.

Закрываем корпус крышкой.

Клеим ножки для устойчивости.

Регулируемый блок питания готов.

Видеоверсия обзора:

P.S. Можно сделать покупку чуть дешевле при помощи кешбека епн — — специализированная система возврата части потраченных денег на покупки с AliExpress, GearBest, Banggood, ASOS, Ozon. Использовав кешбек епн можно вернуть назад от 7% до 15% от потраченных в этих магазинах денег. Ну, а если есть желание заработать на покупках, тогда тебе сюда -

Заявлены довольно высокие параметры, а стоимость готового модуля меньше стоимости входящих в него деталей. Прельщают малые размеры платы.
Я решил приобрести несколько штук и испытать их. Надеюсь, мой опыт будет полезен не слишком опытным радиолюбителям.

Я купил на Aliexpress модули LM2596 , как на фото выше. Хотя на сайте были показаны твердотельные конденсаторы на напряжение 50 В, конденсаторы обычные, а половина модулей с конденсаторами на напряжение 16 В.

Это трудно назвать стабилизатором...

Можно подумать, что достаточно взять трансформатор, диодный мост, подключить к ним модуль, и перед нами стабилизатор с выходным напряжением 3…30 В и током до 2 А (кратковременно до 3 А).

Я так и сделал. Без нагрузки всё было хорошо. Трансформатор с двумя обмотками по 18 В и обещанным током до 1,5 А (провод на глаз был явно тонковат, так оно и оказалось).
Мне нужен был стабилизатор +-18 В и я выставил нужное напряжение.

При нагрузке 12 Ом ток 1,5 А, вот осциллограмма, 5 В /клетка по вертикали.

Это трудно назвать стабилизатором.

Причина проста и понятна: конденсатор на плате 200 мкФ, он служит только для нормальной работы DC-DC преобразователя. При подаче на вход напряжения от лабораторного блока питания, всё было нормально. Выход очевиден: надо питать стабилизатор от источника с малыми пульсациями, т. е. добавить после моста ёмкость.

Борьба с пульсациями

Вот напряжение при нагрузке 1,5 А на входе модуля без дополнительного конденсатора.

Увеличенная ёмкость на входе


С дополнительным конденсатором 4700 мкФ на входе, пульсации на выходе резко уменьшились, но при 1,5 А были ещё заметны. При уменьшении выходного напряжения до 16 В, идеальная прямая линия (2 В /клетка).


Падение напряжения на модуле DC-DC должно быть минимум 2…2,5 В.

Теперь можно смотреть пульсации на выходе импульсного преобразователя.


Видны небольшие пульсации с частотой 100 Гц промодулированные частотой несколько десятков кГц.

LC-фильтр на выходе

Datasheet на LM2596 рекомендует дополнительный LC фильтр на выходе. Так мы и сделаем. В качестве сердечника я использовал цилиндрический сердечник от неисправного БП компьютера и намотал обмотку в два слоя проводом 0,8 мм.


На плате красным цветом показано место для установки перемычки – общего провода двух каналов, стрелкой – место для припаивания общего провода, если не использовать клеммы.

Посмотрим, что стало с ВЧ-пульсациями.


Их больше нет. Остались небольшие пульсации с частотой 100 Гц.
Неидеально, но неплохо.

Замечу, что при увеличении выходного напряжения, дроссель в модуле начинает дребезжать и на выходе резко растёт ВЧ-помеха, стоит напряжение чуть уменьшить (всё это при нагрузке 12 Ом), помехи и шум полностью пропадают.

Итоговая схема включения модулей LM2596

Схема проста и очевидна.

При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов.

При работе от лабораторного блока питания, нагрев при токах 1,5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.

Монтаж

Для монтажа модуля я применил самодельные «стойки» из луженого провода диаметром 1 мм.


Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт.
Плата позволяет легко заменить при необходимости модуль DC-DC.

Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).

Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.

Выводы

1. Необходим трансформатор с сильноточной вторичной обмоткой или с запасом по напряжению, в этом случае ток нагрузки может превышать ток обмотки трансформатора.

2. При токах порядка 2 А и более желателен небольшой теплоотвод на диодный мост и микросхему 2596.

3. Конденсатор питания желателен большой ёмкости, это благоприятно сказывается на работе стабилизатора. Даже крупная и качественная ёмкость немного нагревается, следовательно желательно малое ESR.

4. Для подавления пульсаций с частотой преобразования, LC фильтр на выходе необходим.

5. Данный стабилизатор имеет явное преимущество перед обычным компенсационным в том, что может работать в широком диапазоне выходных напряжений, при малых напряжениях можно получить на выходе ток больше, чем может обеспечить трансформатор.

6. Модули позволяют сделать блок питания с неплохими параметрами просто и быстро, обойдя подводные камни изготовления плат для импульсных устройств, то есть хороши для начинающих радиолюбителей.

Литий-Ионные (Li-Io), напряжение заряда одной банки: 4.2 - 4.25В. Далее по числу ячеек: 4.2, 8.4, 12.6, 16.8.... Ток заряда: для обычных акумов равен 0.5 от ёмкости в амперах или меньше. Высокотоковые можно смело заряжать током, равным ёмкости в амперах (высокотоковый 2800 mAh, заряжаем 2.8 А или меньше).
Литий-полимерные (Li-Po), напряжение заряда одной банки: 4.2В. Далее по числу ячеек: 4.2, 8.4, 12.6, 16.8.... Ток заряда: для обычных акумов равен ёмкости в амперах (акум 3300 mAh, заряжаем 3.3 А или меньше).
Никель-металл-гидридные (NiMH), напряжение заряда одной банки: 1.4 - 1.5В. Далее по числу ячеек: 2.8, 4.2, 5.6, 7, 8.4, 9.8, 11.2, 12.6... Ток заряда: 0.1-0.3 ёмкости в амперах (акум 2700 mAh, заряжаем 0.27 А или меньше). Зарядка не более 15-16 часов.
Свинцово-кислотные (Lead Acid), напряжение заряда одной банки: 2.3В. Далее по числу ячеек: 4.6, 6.9, 9.2, 11.5, 13.8 (автомобильный). Ток заряда: 0.1-0.3 ёмкости в амперах (акум 80 Ah, заряжаем 16А или меньше).