Комплексная IoT-платформа. Что есть интернет вещей и чему служат его облачные платформы Будущее концепции интернета вещей

Внедрение платформ IoT заставит изменить подходы к созданию и использованию АСУ и управлению предприятиями в целом.

IoT или системы телеметрии?

В России и мире наиболее распространено определение интернета вещей (Internet of Things, IoT) с точки зрения технологий: он рассматривается как система объединенных компьютерных сетей и подключенных физических объектов (вещей) со встроенными датчиками и программным обеспечением для сбора и обмена данными, с возможностью удаленного контроля и управления в автоматизированном режиме, без участия человека. Если подключение датчиков телеметрии осуществляется с использованием сетей сотовой связи, то такие системы еще называют системами межмашинных коммуникаций (M2M).

Однако такое определение не позволяет разделить существующие уже многие десятилетия распределенные системы телеметрии/телеуправления и возникающие в настоящее время экосистемы интернета вещей (см. таблицу), а главное - показать, какими изменениями в экономике и бизнесе эти технологические сдвиги вызваны.

Поэтому имеет смысл сформулировать определение интернета вещей с точки зрения бизнеса как технологической основы для перехода к экономике совместного использования (shared eco-nomy) средств про-изводства и предметов конечного потребления. Такая организация производства и потребления товаров и услуг возникает в ходе так называемой четвертой индустриальной революции, которая состоит в появлении возможности формировать полностью автоматические (цифровые) цепочки создания добавленной стоимости, выходящие за границы одного предприятия, с перспективой объединения в глобальную промышленную сеть вещей и услуг.

Экономика совместного использования базируется на принципе объединения различных устройств (станков и промышленного оборудования, транспортных средств, инженерных систем) в программно управляемые пулы и предоставления пользователю не самих устройств, а результатов их работы, по сути их функций. IoT тесно связан с концепцией программно определяемых вещей (soft-ware-defined things, smart things), которая постулирует, что функционал умного устройства (вещи), в отличие от обычной вещи с элементами компьютерного управления, в большей степени определяется программно, причем независимо от его аппаратной реализации. Устройство (объект IoT) одновременно существует в двух взаимосвязанных ипостасях: как физический объект и как его точная и актуальная математическая (программная) модель, т.е. как киберфизическая система.

Объединение устройств в виртуальные пулы и предоставление пользователю их функций позволяет многократно повысить эффективность таких устройств по сравнению с традиционной моделью информационно изолированного использования. Это дает возможность реализовать принципиально новые бизнес-модели, например, контракт жизненного цикла на промышленное оборудование, контрактное производство как сервис, транспорт как сервис, безопасность как сервис и др.

Для воплощения подобного подхода в жизнь нужно, чтобы информация о фактическом состоянии каждого из объединяемых в пул устройств была доступна автоматизированной системе управления, а процессы получения данных о состоянии объекта и исполнении команд управления протекали с допустимым для системы управления уровнем неопределенности.

Облако управления - платформа IoT

Технологической основой для таких изменений служат платформы IoT. Они являются ключевым звеном всей экосистемы интернета вещей, играя роль посредника: устройства и компоненты решения могут передавать данные в широком диапазоне форматов, используя различные протоколы связи (рис. 1). А механизм абстракции дает возможность использовать полученные данные в другом месте цепочки создания ценности (аналитика, бизнес-логика, интеграция с корпоративными системами, разработка приложений).

Платформа IoT представляет собой совокупность взаимодействующих между собой облачных сервисов (облако управления), которая обеспечивает непосредственное, без участия человека и промежуточных АСУ управление подключаемыми объектами. Это облако управления обладает всем необходимым функционалом (программными алгоритмами обработки данных и управления) как низовых систем управления, так и систем управления уровня предприятия. То есть IoT-платформа одновременно выполняет функции универсального средства интеграции и реализует сколь угодно сложные и разнообразные алгоритмы управления.

Механизм открытых прикладных интерфейсов программирования (API) позволяет подключать к облаку управления любые устройства и любые АСУ, не внося в них изменений, а также обрабатывать поставляемые в облако управления данные с использованием готовых шаблонов, а при их отсутствии - с использованием встроенных средств разработки программных приложений. Накопление в платформах IoT исторических данных, поступающих от широкой номенклатуры устройств и АСУ, и применение технологий машинного обучения дают возможность автоматизировать процессы совершенствования алгоритмов, исполняемых облаком управления, что в принципе невозможно в информационно изолированных АСУ.

Таким образом, переход к IoT не требует внесения серь-езных изменений в подключаемые устройства и, как следствие, значительных капитальных затрат на их модернизацию или полную замену. Однако необ-ходимо будет кардинально изменить подходы к использованию подключаемых устройств, трансформировать методы и средства сбора, хранения и обработки данных о состоянии устройств и роль человека в процессах сбора данных и управлении устройствами. Внедрение платформ IoT заставит изменить подходы к созданию и использованию АСУ и общие взгляды на управление предприятиями и организациями.

Согласно классификации аналитиков Berg Insight и First Analysis, большую часть IoT-платформ можно отнести к одной или сразу к нескольким категориям:

  • платформы управления коммуникациями (Connectivity Management Platforms, CMP);
  • платформы управления сетями/данными/абонентами (Network/Data/Subscriber Management, NM/DM/SM);
  • платформы управления устройствами (Device Management Platforms, DMP);
  • платформы для обеспечения работы приложений (Application Enablement Platforms, AEP);
  • платформы для разработки приложений (App-lica-tion Development Platforms, ADP).

Ключевыми международными производителями IoT-платформ являются компании PTC, SAP, Microsoft и Telit.

Есть ли IoT-платформы в России?

Возможно, такое утверждение звучит излишне резко, но автор считает, что в России нет интернета вещей и, соответственно, облачных IoT-платформ. А что есть? Есть распределенные системы телеметрии с крайне ограниченной функциональностью проприетарного ПО и неприемлемо высоким соотношением «стоимость/экономические результаты применения». Как следствие, масштаб использования даже этих примитивных систем телеметрии, измеряемый количеством подключенных к ним устройств, в России крайне невелик - около 20,5 млн штук (рис. 2), что во много раз меньше, чем количество имеющих выход в интернет пользовательских устройств, а должно быть наоборот.

Общие черты всех российских рынков распределенных систем телеметрии:

  • Проприетарность и изолированность создаваемых аппаратно-зависимых решений в сочетании с малой тиражностью, что отражается на их качестве и стоимости.
  • Крайне ограниченный функционал - только мониторинг, причем с минимальным уровнем автоматизации обработки телеметрических данных.
  • Большое количество мелких игроков, не способных развивать свои продукты/решения.
  • С недавних пор - неготовность заказчиков оплачивать неэффективность этих решений.

На развитие отраслевых рынков (сфер применения) распределенных систем телеметрии влияют разные факторы, но всюду прослеживается одна общая тенденция. Это тенденция перехода от проприетарных изолированных систем мониторинга, осуществляемого со значительным участием персонала (фактически традиционных диспетчерских систем), к открытым экосистемам сервисов, ориентированных на телеметрию с аналитикой реального времени и телеуправление с взаимной оптимизацией работы различных систем и ресурсов.

Развитие отраслевых рынков систем телеметрии в России в этом направлении, очевидно, приведет к формированию открытых экосистем разработчиков. В такие экосистемы будут входить как разработчики сенсоров и исполнительных устройств IoT/M2M, способных взаимодействовать с различными системами/приложениями, так и разработчики приложений, которые создаются в формате облачных сервисов и способны через механизм открытых API взаимодействовать с сенсорами и исполнительными устройствами вне зависимости от того, кто является их владельцем.

Зачем переходить в интернет вещей?

Создание и развитие интернета вещей в России - объективная необходимость, поскольку только с его помощью можно решить чрезвычайно остро стоящую задачу одновременного повышения качества и снижения издержек по всей цепочке формирования добавленной стоимости. Традиционные АСУТП и распределенные системы телеметрии, как уже отмечалось, дают крайне ограниченный экономический эффект.

Что мешает? Мешает главным образом то, что переход к IoT - это трансформация принципов управления предприятием, к которой никто в России не готов. Не готовы даже ИТ-отделы, сторона, казалось бы, больше всех заинтересованная в увеличении значимости ИТ внутри организаций, которое обеспечит внедрение IoT.

Для обоснования этой моральной неготовности приводится множество аргументов против. У них есть одна общая черта - они не имеют ничего общего с реальностью.

Вот несколько типичных таких возражений, по сути - предубеждений против облаков:

1. Передача технологических данных в облако? Чтобы наше промышленное оборудование сломали хакеры? У нас и так все замечательно, а вы тянете нас в какую-то авантюру!

В России более 250 тыс. не подключенных к IoT-платформам контроллеров АСУТП «видны» через публичный интернет и никак не защищены - это яркая иллюстрация того, насколько сейчас «все замечательно» с точки зрения безопасности. На самом деле в IoT-платформах есть мощные механизмы защиты подключенных устройств и передаваемых данных. То есть подключение устройств телеметрии и телеуправления к IoT-платформе - это, пожалуй, единственный из существующих сегодня экономически обоснованных способов обеспечить информационную безопасность таких устройств в противовес попыткам возложить функции инфобезопасности на сами устройства.

2. Все решения всегда будет принимать человек, никакой искусственный интеллект его не заменит. Незачем в облаке анализировать данные технологических систем, они «живут» десятые доли секунды. Пускай первичный ввод данных в АСУП ведется вручную. Не надо брать их из АСУТП, это низкоуровневые системы и они совсем для другого. Производственные процессы осуществляются по жестким алгоритмам, и не надо лезть туда с оптимизацией и Big Data!

Более 70% чрезвычайных происшествий техно-генного характера (в частности, катастрофа на Чер-нобыльской АЭС) происходят из-за неправильных управленческих решений, принимаемых в условиях жесткого дефицита информации и времени. При-менение платформ IoT позволяет перейти на «плоские» системы предиктивного управления с единым гибким высокоавтоматизированным контуром «мониторинг - оптимизационное планирование - управление», минимизирующим негативное влияние человеческого фактора.

3. Хорошо, будем анализировать технологические данные с помощью Big Data и искусственного интеллекта. Но данные свои мы никому не отдадим и для их анализа развернем собственную платформу (частное облако).

На деле результаты машинного обучения тем лучше, чем больше объем анализируемых данных, поэтому любая информационно изолированная система, сколько бы не было в нее вложено денег, всегда будет хуже, чем открытая. Кроме того, специалисты по искусственному интеллекту и Big Data сегодня в жесточайшем дефиците, причем не только в России, но и в мире. А платформы IoT предлагают не только развитый инструментарий для создания аналитических приложений, но и готовые специализированные приложения для решения типовых задач.

4. Зачем нам сквозные автоматические процессы обмена данными между нами, нашими поставщиками и нашими потребителями? Мы отлично справляемся, общаясь с поставщиками и потребителями по телефону и электронной почте. Почему мы должны данные с наших производственных систем передавать другим компаниям, да еще в автоматическом режиме?

Оптимизация процессов внешнего взаимодействия дает огромный рост производительности и снижения издержек. Широко известный пример: переход на сквозные автоматические процессы позволил Harley Davidson сократить производственный цикл с 21 дня до 6 часов и сегодня каждые 89 секунд с конвейера сходит мотоцикл, полностью настроенный под своего будущего владельца.

Рынок всех рассудит

В России продолжается беспрецедентное по длительности снижение реальных доходов населения, начавшееся еще в ноябре 2014 г. По данным экспертов Центра экономических и политических реформ, российским семьям приходится тратить бульшую часть своего дохода - в среднем 70-80% - на самое необходимое. Таким образом, любимое отечественное бизнес-развлечение - перекладывание производителем своих постоянно растущих из-за инфляции и общей низкой эффективности бизнеса издержек на потребителя становится крайне затруднительным, во всяком случае в конкурентных отраслях экономики, ввиду отсутствия денег у конечных потребителей. Эти трудности распространяются на взаимоотношения поставщиков и потребителей в B2B-цепочках.

Значит, необходимо оптимизировать издержки по всей B2B2C-цепочке создания добавленной стоимости. Именно эту задачу и решает интернет вещей, реализуя сквозные автоматизированные бизнес-процессы, причем без значительных капитальных затрат.

Облачный сервис получает данные о скорости тысяч автомобилей и строит карту загруженности дорог города, помогая автомобилистам найти быстрый маршрут. Браслет на ноге юноши-футболиста отслеживает его активность во время тренировки и загружает данные в приложение, отбирающее наиболее успешных юниоров в национальную сборную по футболу. «Умные» счетчики передают показания онлайн, сообщают об утечках, помогают сэкономить на ресурсах и снизить оплату ЖКХ. А конвейеры с интеллектуальной начинкой предупреждают оператора о симптомах приближающегося износа агрегата, предотвращают остановку производства и снижают издержки на ремонт.

Все это - «Интернет вещей» или Internet of Things (IoT).

Как появился «Интернет вещей»

Концепция Интернета вещей была предугадана в начале XX века Николой Тесла - физик пророчил радиоволнам роль нейронов «большого мозга», управляющего всеми предметами. А инструменты его контроля должны будут легко умещаться в кармане. Великий изобретатель не был фантастом, просто он понимал то, что его современники не могли и представить.

Сто лет спустя термин «Интернет вещей» ввел в широкий оборот сотрудник исследовательского агентства при Массачусетском технологическом институте Кевин Эштон. Он предложил увеличить эффективность логистических процессов без вмешательства человека: с помощью радиодатчиков собирать информацию о наличии товаров на складах предприятия и отслеживать их движение к торговым точкам. Каждая метка отправляла в сеть данные о своем местонахождении в настоящий момент времени. Использование RFID-меток ускорило реакцию поставщиков и ритейлеров на изменение спроса и предложения: товары не лежали на складе, а отправлялись туда, где они действительно необходимы. Эффект от введения маркировки оценили, и с января 2007 года все поставщики крупнейшей американской розничной сети производят товары только с радиометками.

Концепция Интернета вещей базируется на принципе межмашинного общения: без вмешательства человека электронные устройства «общаются» между собой. Интернет вещей - это автоматизация, но более высокого уровня. В отличие от «умных» домов узлы системы используют TCP/IP-протоколы для обмена данными через каналы глобальной сети Интернет.

Такой метод коммуникации дает серьезное преимущество - возможность объединять системы между собой, строить «сеть сетей». Это позволяет изменить бизнес-модели отраслей и даже экономики целых стран.

Интернет вещей не только меняет существующие правила, но и формирует новые правила экономики совместного использования» (shared economy), исключая посредников из бизнес-модели.

Менее чем за 20 лет Интернет вещей стал трендом рынка информационных технологий. Аналитики прогнозируют колоссальное количество IoT устройств через несколько лет - свыше 50 миллиардов. Развитие производства электронных компонентов позволяет «штамповать» миллионы дешевых чипов для всевозможных устройств. От радиочипов, нанесенных на складские коробки, IoT трансформировался в глобальную «интернетизацию» окружающих нас предметов, воспринимаемый людьми как глобальная «оцифровка» реальности.

Интернет вещей «на пальцах»

Для широкой публики Интернет вещей - это холодильник, публикующий фото ваших продуктов в Instagram, или стиральная машина, которая постит в Facebook: «У меня была сегодня чумовая стирка». Из 28 миллиардов ожидаемых подключений менее половины придется на пользовательские гаджеты, которые составляют «customer IoT»: смартфоны и планшеты, носимые датчики для фитнеса и амбулаторной медицины.

Более 15 миллиардов устройств будут работать в бизнесе и промышленности: разнообразные датчики для оборудования, терминалы для продаж, сенсоры на производственных агрегатах и общественном транспорте.

Интернет вещей станет тем инструментом, с помощью которого можно дешево, быстро и масштабно решать конкретные бизнес-задачи в конкретных отраслях.

Промышленный IoT (Industrial IoT, IIoT) объединяет концепцию межмашинного общения, использование BigData и проверенные технологии автоматизации производства. Ключевая идея IIoT в превосходстве «умной» машины над человеком в точном, постоянном и безошибочном сборе информации. Интернет вещей повысит уровень контроля качества продукции, выстроит процесс бережливого и экологичного производства, обеспечит надежные поставки сырья и оптимизирует работу заводского конвейера.

Интернет людей - всемирная паутина, которая «высасывает» не только наши деньги, но и время. Мы проводим по несколько часов в неделю в соцсетях, онлайн-играх или на сайтах. Покупаем в интернет-магазинах вещи, которые нам зачастую не нужны, просто потому, что это легко и доступно - в два клика.

В отличие от традиционного «человеческого» интернета IoT применяется для рационального и практичного подхода. Его ключевая задача - автоматизация, оптимизация, сокращение материальных и временных затрат.

Применение IoT в промышленной индустрии и транспорте сокращает затраты за счет снижения аварийности, уменьшения потерь сырья и количества использованных ресурсов. В сфере энергетики - повышает эффективность выработки и распределения электроэнергии.

Интернет вещей экономит не только деньги, но и время: машины заменили человека на рутинной работе и освободили от выполнения рискованных или стандартных задач. Интеллектуальные системы следят за промышленным конвейером, считают товар на складах и регулируют движение вместо человека. В любую погоду, круглосуточно и без выходных.

Нас окружают разнообразные «подключенные» устройства: на улице работают системы безопасности и экомониторинга. Интернет вещей начинает использоваться в быту, в ЖКХ и индустриальной сфере, транспорте, сельском хозяйстве и медицине.

Пример 1. Яндекс.Навигатор - тоже IoT

Знакомый всем пример - Яндекс.Навигатор. Водители по всей России и СНГ пользуются этим сервисом. Смартфоны и планшеты передают координаты, направление движения и скорость в службу Яндекс, а принятая от пользователей информация анализируется на сервере компании. Получив сведения о заторе, приложение автоматически предлагает водителю варианты объезда и отображает маршрут на экране телефона или планшета. Мобильные устройства, центры обработки данных и приложение Яндекса обмениваются данными без вмешательства человека, являя собой отличный пример Интернета вещей.

Как результат - водители тратят меньше времени в пробках, выбирая оптимальные маршруты объезда.

Еще немного и искусственный интеллект Яндекса начнёт перераспределять нагрузку на дорогах городов. Учитывая накопленную статистику, он будет предлагать такие маршруты, которые оптимально загрузят магистрали и минимизируют пробки.

Пример 2. Спортивный IoT

В спорте Интернет вещей используют для накопления статистики и анализа данных. Применение IoT-решений разнообразно: от мобильных приложений для любителей утренних пробежек, следящих за расходом калорий, до производительных информационно-вычислительных систем в профессиональном спорте.

Командное IoT-решение отслеживает состояние отдельных спортсменов и всего коллектива. Информация о перемещении, пульсе считываются датчиками, встроенными в жилет, надетый игроком. Координаты и медицинская телеметрия отправляются на облачную платформу, снабжая оперативной информацией руководство и вспомогательные службы команды. Тренер строит тактику игры, не дожидаясь тайм-аута для оценки состояния коллектива и переигрывает соперников за счет быстрого реагирования на окружающую обстановку.

Ранее у тренерского состава и спортивных аналитиков не было иного выбора, кроме как просматривать после игры заметки и десятки часов видеозаписи для оценки поведения игрока на поле и его работоспособности. Теперь информация предоставляется онлайн и голевой момент матча всегда можно «вытащить» из хранилища и проанализировать. Интернет вещей обрел популярность не только среди тренеров, но и у медиков - бригады оказания первой помощи мгновенно реагируют на критические показания здоровья подопечных.

Пример 3. «Умные» счетчики

В жилищно-коммунальном хозяйстве IoT-технологии нашли применение в системах интеллектуальной диспетчеризации - «умных» приборов учета ресурсов . Подключенные к Интернету счетчики передают показания в «облако», а диспетчер видит расход воды, электричества или газа в отдельном доме, квартале или в целом городе. Это дает возможность, не заглядывая в квартиры собственников, в режиме реального времени, иметь полную картину потребления ресурсов, удаленно управлять приборами учета, оперативно выставлять счета жильцам. Без обходчиков, без обработчиков и без временных потерь.

Такой подход позволит изменить механизм учета ресурсов. Сегодня управляющие компании собирают показания с приборов учета, обрабатывают данные, выставляют счета и собирают оплату за ЖКУ. В случае внедрения «умных» счетчиков в масштабах города, структуры, обслуживающие жилые дома, превращаются в ненужных посредников и «выходят из игры». Что сегодня мы и наблюдаем в некоторых регионах России, где водоканалы переходят на прямые договоры с жильцами. Электросетевые компании, кстати, уже давно применяют такую схему расчетов, но по инерции нанимают обходчиков или требуют данные с жильцов.

Прямой диалог между счетчиками в домах и «ресурсниками» стал возможен благодаря IoT-решениям - беспроводной автоматизированной диспетчеризации. Это отличный пример того, как Интернет вещей меняет бизнес-модель в отрасли.

Аналогично - UBER, который за счет концепции Интернета вещей исключил таксомоторные компании из бизнес-модели частного извоза. Крупные структуры стали просто не нужны и сейчас клиент напрямую общается с водителем.

За счет точного учета, оповещениях о перерасходе ресурсов или авариях подключенные к Интернету приборы учета ЖКХ сохраняют до 30% ресурсов в каждом многоквартирном доме. А помимо удобства, дополнительное преимущество для конечного потребителя - сэкономленные на содержании ненужной «прослойки» деньги.

Диспетчеризация приборов учета воды и удаленного съема показаний - один из наиболее удачных примеров применения технологии Интернета вещей в сфере жилищно-коммунального хозяйства.

Организации, внедрившие IoT-решения для управления многоквартирными жилыми домами, получили эффективный инструмент контроля и учета ресурсов. Такая система автоматизирует трудоемкие операции по сбору и обработке показаний, которые ранее требовали участия половины штата сотрудников. Имея на руках прозрачные данные, управляющая компания выявляет потери и минимизирует расходы на общедомовые нужды (ОДН).

Пример 4. Сельское хозяйство

Более половины производителей томатов и треть хлопководов Израиля используют систему для мониторинга влажности, температуры грунта и других характеристик почвы . Датчик, «закрепленный» за отдельным растением или участком с посевами, отправляет информацию на облачный сервер, откуда данные поступают оператору, выводя на экран состояние саженца и рекомендации по улучшению его плодоносных свойств.

В США сформировали интересный симбиоз такой «пахучей» сферы агротехники как удобрение полей и IoT. Фермер оснастил трактора-распрыскиватели, обслуживающие угодья в радиусе 121 километра от станции, решением на базе беспроводных технологий. Водитель-оператор насосной установки удаленно отслеживает и распределяет подачу органических удобрений на поля, а владелец контролирует расход с экрана своего смартфона.

Пример 5. «Умные» заводы

Зарубежные владельцы заводов уже осознали преимущества IoT в сокращении расходов и увеличении прибыльности индустриального бизнеса. В электроэнергетике и легкой промышленности интерес к применению Интернета вещей есть. С помощью IoT-технологий операторы морских ветрогенераторов удаленно контролируют износ роторов и турбин, отслеживают их производительность. За счет своевременного обслуживания минимизируется риск остановки «ветряков» и отпадает необходимость в отправке бригад на удаленные морские платформы.

Швейцарская компания, выпускающая станки и двигатели, реализовала мечту производственных инженеров - проведение упреждающего техобслуживания (ТО).

Более 5000 единиц оборудования на производственных площадках подключили к IoT-платформе изготовителя, сигнализирующей о необходимости ТО для профилактики возможной поломки. Несколько лет назад компания командировала выездные бригады техников для диагностики на местах.

Сейчас эксплуатант станка или электродвигателя отслеживает состояние оборудования онлайн и вовремя узнает о возможных авариях. Такой «проактивный» мониторинг сократил расходы за счет снижения издержек и ликвидации простоев. Традиционно, ППР (планово-предупредительные ремонты) требовали остановки производственных линий и организовывались по графику, независимо от того, была в них необходимость или нет.

Внедрение IoT-технологии позволило проводить упреждающее техобслуживание тогда, когда оно действительно нужно, и ремонтировать машины до того, как они сломаются. Интернет вещей обеспечил не только непрерывность производства, но и сэкономил на планировании предупредительных работ - затраты на планирование составляют 30-40% от объема ремонтного фонда предприятия.

В ближайшее время бизнес станет первым и основным потребителем IoT-технологий. Топ-менеджеры корпораций рассматривают Интернет вещей в первую очередь как инструмент для снижения расходов и увеличения производительности. Предприниматели хотят использовать инновационную концепцию для вхождения в новые рынки и расширить свой ассортимент за счет использования подключенных устройств.

Промышленники понимают: новые технологии оптимизируют производственный процесс и уберут из него человеческий фактор, а вместе с ним и лишние риски.

Пример 6. «Носимый» IoT

Крупные ИТ-компании начали инвестировать в развитие медицинского Интернета вещей. Одно из таких решений отслеживает динамику болезни и выздоровления пациентов в режиме 24/7 посредством носимого на теле датчика. Мониторинг происходит в режиме реального времени, начиная от сбора показаний в стационаре и дома, завершая направлением данных лечащему врачу и в лаборатории для анализа и принятия решений.

В медицине есть проекты, развернутые в рамках лечебного учреждения и предупреждающие персонал об истощении запаса медикаментов или инструментов.

В обеспечении физической безопасности применение IoT-концепции скорее экзотично, чем привычно. В октябре 2016 года технологию Интернета вещей в прямом смысле «взяла на вооружение» оборонная промышленность - для охраны Крымской военно-морской базы Минобороны РФ закупило комплекс охраны «Часовой-1».

Комплекс, в состав которого входят вибробраслеты, гарантирует безопасность бойцов, охраняющих объекты и проверяющих автотранспорт на «блоках». Каждый браслет оснащен датчиком «неподвижности». Как только часовой прекращает движение более чем на 30 секунд, система посылает на его браслет вибросигнал. Если в течение 15 секунд после предупреждения боец не «оживет» - в караульном помещении объявляется тревога.

IoT - это новый этап развития сети Интернет, который проникает в ранее недоступные сферы, привнося качественные изменения, делая жизнь людей проще, а работу компаний - эффективней.

Интернет вещей будущего

IoT стал всемирным трендом, и скоро возможность «интернетизации» станет обязательным требованием для продуктов и услуг широкого потребления. Устройства будут выходить с конвейера с уже встроенными интеллектуальными и коммуникационными возможностями.

За счет увеличения масштаба производства и удешевления компонентной базы стоимость умных устройств снизится до минимума. IoT проникнет в автомобили, грунт, море и реки, в тело человека. Датчики станут настолько миниатюрными, что будут помещаться в мелких бытовых предметах или продуктах питания.

Соответственно устройствам уменьшатся в размерах и аккумуляторы, а затем они и вовсе исчезнут - «умные» датчики научатся получать энергию из окружающей среды: от вибрации, света или воздушных потоков и станут полностью автономными.

Интернет вещей станет гетерогенной средой, которая будет существовать как отдельный живой организм. Наступит время машин.

Сложности с компонентной базой ушли в прошлое, появился новый вызов: необходимо объединить миллиарды «умных» приборов в единую сеть.

Интеллектуальный станок, датчик температуры масла на промышленном агрегате, смарт холодильник - всем этим устройствам необходима среда для общения. В противном случае они так и останутся «немыми»: обычным счетчиком или датчиком, отличающимся от своих собратьев только «космическим» дизайном.

Если оставить прогнозы о «количестве устройств Интернета вещей к 2020 году» ясно, что IoT-индустрия растет. Инженерам уже не интересно, сколько, 50 миллиардов датчиков и смартфонов будет в сети или 100 миллиардов. Порядок уже ясен, как и цель - подключение «армии» устройств к Интернету.

Для передачи данных разрабатывалось множество протоколов, но каждый из них был «заточен» под определенную задачу: GSM для голосового общения, GPRS для обмена данными с мобильных телефонов, ZigBee - создания локальной сети и управления «умными» домами, а Wi-Fi для беспроводных локальных сетей с высокой скоростью передачи данных.

Эти технологии могут быть применены для решения нецелевых задач и по-разному с ними справляться.

К примеру, Яндекс.Навигатор сможет работать через GPRS/3G/4G и никакая другая связь для такого приложения не подойдет. Мы, конечно, можем подключить смартфон к Wi-Fi и запустить Навигатор, но как только автомобиль отъедет на 100 метров от точки доступа - приложение «закончится». А в «умном» доме не «приживутся» автономные GPRS-датчики - через два дня в них сядут батарейки. Поэтому в интеллектуальном жилище лучше всего подойдет энергоэффективный ZigBee.

Набирая обороты, Интернет вещей выдвигает свои требования:

  1. Небольшой объем данных: датчикам и сенсорам не нужно передавать мега- и гигабайты, как правило это биты и байты.
  2. Энергоэффективность: подавляющая часть датчиков автономны и должны будут работать годами.
  3. Масштабируемость: в сети должны уживаться миллионы различных устройств, и добавление одного-двух миллионов не должно вызывать сложностей.
  4. Глобальность: нужен широкий территориальный охват и как следствие передача информации на большие расстояния.
  5. Проникающая способность: устройства в подвалах, шахтах должны передавать сигнал наружу.
  6. Стоимость устройств: устройства должны быть дешевы и доступны для пользователя, а готовые решения рентабельны для бизнеса.
  7. Простота: принцип «поставил и забыл»: пользователь выберет понятные и дружелюбные устройства.

Казалось бы, сотовые сети - очевидные кандидаты на построение развернутой на десятки километров беспроводной IoT-среды. Однако ни стандарт GSM, ни инфраструктура мобильных операторов изначально не создавались для М2М-диалога. Протоколы сотовой связи предназначены для общения людей: большой объем трафика и высокая скорость обмена данными в густонаселенных районах.

Разработчики изначально не предполагали возможность обмена небольшими объемами данных между разнесенными «умными» сенсорами. Датчику с WiFi необходимо постоянное питание, а элемент умного GSM устройства продержится 2-3 недели. Мы не готовы ежемесячно менять батарейки в десятках устройствах или монтировать к ним проводную систему питания.

Подключение всевозможных устройств к мобильным сетям еще можно представить в населенных пунктах, но за пределами оживленных трасс и урбанизированных территорий протоколы GSM, 3G, LTE не позволяют создавать масштабные IoT проекты - слишком дорого разворачивать и обслуживать инфраструктуру сотовой сети.

В городе сотовая связь ограничена низкой проникающей способностью сигнала. А «умные» датчики или счетчики зачастую будут находиться за несколькими стенами, в техколодцах или на цокольных этажах, где уже не берет GSM.

Фундаментом масштабных проектов станет энергоэффективная сеть, которая удовлетворит запросы промышленников, сельхозпроизводителей, государственные компании в масштабности и невысокой стоимости эксплуатации. Интернету вещей нужен стандарт связи с возможностью широкого территориального охвата, высокой энергоэффективностью, дешевой инфраструктурой и не требующей высоких эксплуатационных расходов.

LPWAN - будущее IoT концепции

С учетом перечисленных требований и ограничений, решением проблемы стало использование технологии на стыке высокой дальности и низкого энергопотребления. Она получила название Low-Power Wide-Area Network (сокращенно – LPWAN) или энергоэффективная сеть дальнего радиуса действия.

LPWAN разрабатывался специально для межмашинного общения, и стал двигателем дальнобойного Интернета вещей.

Отсутствие высоких требований к объему передаваемой информации позволило сконцентрироваться на других, более важных параметрах технологии и обеспечить 50 километровую дистанцию взаимодействия между разнесенными устройствами, высокую энергоэффективность, проникающую способность и масштабируемость.

Дальнобойная и энергоэффективная, LPWAN отлично подходит для IoT, как в бытовом, так и в промышленном секторе, где имеется потребность в автономной передаче телеметрии на дальние расстояния.

LPWAN гораздо лучше соответствует запросам М2М-сетей, чем та же сотовая связь - тысячи квадратных километров могут быть покрыты одной базовой станцией. Построение такой сети проще, а обслуживание - дешевле. Подобный подход становится единственной альтернативой в случае, когда датчики разнесены по большой территории. Как, например, счетчики воды в пределах одного квартала или датчики влажности почвы, размещенные сразу на нескольких полях.

Резюме

Уже сейчас IoT меняет правила игры в отдельных отраслях: проникает в недоступные и невозможные ранее сферы, улучшая качество жизни и увеличивая эффективность бизнеса. Технологии Интернета вещей нашли применение там, где они выгодны бизнесу и удобны людям.

LPWAN - двигатель «дальнобойного» беспроводного IoT

Преимущества LPWAN-технологии хорошо вписываются в потребности масштабного внедрения IoT в промышленности, транспорте, сфере безопасности и десятках других отраслей. Большой радиус действия, высокая автономность конечных устройств, простота развертывания LPWA-сети и низкая стоимость инфраструктуры даст толчок крупномасштабным проектам и развитию Интернета вещей.

IoT - Internet of Things

Internet of Things (IoT) - modern telecommunication technologies
(Интернет вещей - современные телекоммуникационные технологии)

29/08/16

Что такое Интернет вещей? What is the Internet of Things, IoT? Internet of Things (IoT) - это новая парадигма Internet. Что подразумевается под термином "Things" в Internet of Things. Под термином "вещь" в Internet of Things (IoT) подразумеваются интеллектуальные, т.е. "умные" предметы или объекты (Smart Objects или SmartThings, или Smart Devices).

Чем Internet of Things (IoT) отличается от традиционного Интернет? Internet of Things (IoT) - это традиционная или существующая сеть Интернет, расширенная подключенными к ней вычислительными сетями физических устройств или вещей, которые могут самостоятельно организовывать различные шаблоны связи или модели подключения (Thing - Thing, Thing - User и Thing - Web Object).

Следует отметить, что Smart Objects – это датчики или приводы (sensors or actuators), снабженные микроконтроллером с ОС реального времени со стеком протоколов, памятью и устройством связи, встроенные в различные объекты, например, в электросчетчики или газовые счетчики, датчики давления, вибрации или температуры, выключатели и т.д. "Умные" объекты или Smart Objects могут быть организованны в вычислительную сеть физических объектов, которые могут быть подключены через шлюзы (хабы или специализированные IoT платформы) к традиционной сети Интернет.

В настоящее время существует множество определений понятия Internet of Things (IoT). Но, к сожалению, они противоречивы, нет четкого и однозначного определения понятия Internet of Things (IoT).

Чтобы разобраться в сути Internet of Things (IoT), сначала целесообразно рассмотреть инфраструктуру Internet и сервис WWW (World Wide Web) или Web (веб). Internet - это сеть сетей, т.е. сеть, объединяющая различные сети и отдельные узлы удаленных пользователей с помощью маршрутизаторов и сетевого (межсетевого) протокола IP. Другими словами под термином Internet подразумевается инфраструктура глобальной сети, состоящая из множества компьютерных сетей и отдельных узлов, соединенных каналами связи.

Глобальная сеть Internet является физической основой сервиса Web. Web - это всемирная паутина или распределенная система информационных ресурсов, предоставляющая доступ к гипертекстовым документам (веб-документам), размещенным на веб-сайтах сети Интернет. Доступ и передача веб-документов в формате HTML по сети Интернет осуществляется с помощью прикладного протокола HTTP/HTTPS сервиса Web на основе стека протоколов TCP/IP сети Интернет.

С учетом вышеизложенного, можно сделать выводы, что IoT характеризуется масштабными изменениями инфраструктуры глобальной сети Интернет и новыми моделями общения или подключения: "вещь - вещь", "вещь - пользователь (User)" и "вещь - веб объект (Web Object)".

Internet of Things (IoT) целесообразно рассматривать на технологическом, экономическом и социальном уровнях.

На технологическом уровне Internet of Things – это концепция развития инфраструктуры сети (физической основы) Интернет, в которой "умные" вещи без участия человека способны подключиться к сети для удаленного взаимодействия с другими устройствами (Thing - Thing) или взаимодействия с автономными или облачными ЦОДами или DATA-центрами (Thing - Web Objects) для передачи данных на хранение, их обработку, аналитику и принятия управленческих решений, направленных на изменение окружающей среды, или для взаимодействия с пользовательскими терминалами (Thing - User) для контроля и управления этими устройствами.

Internet of Things (IoT) приведет к изменениям экономических и социальных моделей развития общества. Существуют различные классификации Internet of Things (IoT) (например, Индустриальный Интернет вещей - IIoT, Интернет сервисов - IoS и т.д.) и области его использования (в энергетике, транспорте, медицине, сельском хозяйстве, ЖКХ, Smart Сity, Smart Home и т.д.).

Cisco ввела новое понятие - Internet of Everything, IoE («Интернет всего» или «Всеохватывающий Интернет»), а Internet of Things является начальным этапом развития «Всеохватывающего Интернет»

Развитие Интернета вещей или Internet of Things (IoT) зависит от:

  • технологий беспроводных сетей с низким энергопотреблением (LPWAN, WLAN, WPAN);
  • темпов внедрения сотовых сетей для Internet of Things (IoT): EC-GSM, LTE-M, NB-IoT и универсальных сетей 5G;
  • темпов перехода сети Интернет на версию протокола IPv6;
  • технологий Smart Objects (сенсоров и актуаторов, снабженных микроконтроллером, памятью и устройством связи);
  • специализированных операционных систем со стеком протоколов для микроконтроллеров сенсоров и актуаторов;
  • широкого применения стека протоколов 6LoWPAN/IPv6 в операционных системах микроконтроллеров сенсоров и актуаторов;
  • эффективного использования Cloud computing для Internet of Things (IoT) платформ;
  • развития технологий M2M (machine-to-machine);
  • применения современных технологий Software-Defined Networks, снижающих нагрузку на каналы связи.

Архитектура глобальной сети Internet of Things (IoT)

В качестве фрагмента архитектуры Internet of Things (IoT) рассмотрим сеть (рис. 1), состоящую из нескольких вычислительных сетей физических объектов, подключенных к сети Интернет с помощь одного из устройств: Gateway, Border router, Router.

Как следует из архитектуры IoT, сеть Internet of Things состоит: из вычислительных сетей физических объектов, традиционной IP сети Интернет и различных устройств (Gateway, Border router и т.д.), объединяющих эти сети.

Вычислительные сети физических предметов состоят из "умных" датчиков и приводов (исполнительных устройств), объединенных в вычислительную сеть (персональную, локальную и глобальную) и управляемых центральным контроллером (шлюзом или IoT Habs, или платформой IoT).

В Internet of Things (IoT) применяются технологии беспроводных вычислительных сетей физических предметов с низким энергопотреблением, к которым относятся сети малого, среднего и дальнего радиуса действия (WPAN, WLAN, LPWAN).

Беспроводные технологии сетей LPWAN (Low-power Wide-area Network) Интернета вещей IoT

К распространенным технологиям сетей дальнего радиуса действия LPWAN, которые представлены на рис. 1, относятся: LoRaWAN, SIGFOX, "Стриж" и Cellular Internet of Things или сокращено CIoT (EC-GSM, LTE-M, NB-IoT). К сетям LPWAN относятся и другие технологии, например, ISA-100.11.a, Wireless, DASH7, Symphony Link, RPMA и так далее, которые на рисунке 1 не указаны. Обширный список технологий представлен на сайте link-labs .

Одной из широко распространенных технологий является LoRa , которая предназначена для сетей дальнего радиуса действия, с целью передачи данных телеметрии различных приборов учета (датчиков воды, газа и т.д.) на дальние расстояния.

LoRa – это метод модуляции, который определяет протокол физического уровня модели OSI. Технология модуляция LoRa может применяться в сетях с различной топологией и различными протоколами канального уровня. Эффективными сетями LPWAN являются сети LoRaWAN, которые используют протокол канального уровня LoRaWAN (MAC протокол канального уровня), а в качестве протокола физического уровня - модуляцию LoRa.

Сеть LoRaWAN (рис. 2.) состоит из оконечных узлов End Nodes (трансиверов или модулей LoRa), подключенных по беспроводным сетям к концентраторам/шлюзам или базовым станциям, Network Server (сервера сети оператора) и Application Server (сервера приложений сервис провайдера). Сетевая архитектура LoRaWAN - "клиент-сервер". LoRaWAN работает на 2 уровне модели OSI.

Между компонентами сети «оконечные узлы – сервер» используется двусторонняя связь. Взаимодействие оконечных узлов локальной сети LoRaWAN с сервером происходит на основе протоколов канального уровня. В качестве адреса используются уникальные идентификаторы устройств (оконечных узлов) и уникальные идентификаторы приложения на сервере приложений.

Физическим уровнем стека протоколов LoRaMAC сегмента сети «оконечные узлы – шлюз», который функционирует на втором уровне модели OSI, является беспроводная модуляция LoRa, а MAC-протоколом канального уровня является LoRaWAN. Шлюзы LoRa подключаются к серверу сети провайдера или оператора с помощью стандартных технологий Wi-Fi/Ethernet/3G, которые относятся к уровню интерфейсов IP сетей (физическим и канальным уровням стека TCP/IP).

Шлюз LoRa обеспечивает межсетевое взаимодействие между сетями на основе разнородных технологий LoRa/LoRaWAN и Wi-Fi, Ethernet или 3G. На рис. 1 представлена сеть LoRa с одним шлюзом, выполненная по топологии «звезда», но сеть LoRa может быть и с множеством шлюзов (сотовая структура сети). В сети LoRa с множеством шлюзов «оконечные узлы – шлюз» построены по топологии «звезда», в свою очередь, "шлюзы - сервер" тоже подключены по топологии «звезда».

Полученные с оконечных узлов данные хранятся, отображаются и обрабатываются на сервере приложений (на автономном Web сайте либо в «облаке»). Для анализа IoT-данных могут применяться методы Big Data. Пользователи с помощью клиентских приложений, установленных на смартфон или ПК, имеют возможность доступа к информации на сервере приложений.

Технологии SIGFOX (sigfox.com) и "Стриж" (strij.net) аналогичные технологии LoRaWAN (www.semtech.com), но имеют некоторые отличия. Основное отличие заключаются в методах модуляции, которые определяют протоколы физических уровней этих сетей. Технологии SIGFOX, LoRaWAN и "Стриж" являются конкурентами на рынке сетей LPWAN.

Конкурентами на рынке сетей LPWAN являются и технологии CIoT (EC-GSM, LTE-M, NB-IoT), а также G5. Они предназначены для построения беспроводных сетей LPWAN сотовой связи на основе существующей инфраструктуры сотовых операторов. Применение традиционных сетей сотовой связи в IoT является нерентабельным, поэтому в настоящее время нишу сетей LPWAN заняли LoRaWAN, SIGFOX и т.д. Но если операторы сотовой связи своевременно внедрят технологии EC-GSM (Extended Coverage GCM), LTE-М (LTE для М2М-коммуникаций), основанные на эволюции GSM и развитии LTE, то они потеснят LoRaWAN, SIGFOX и другие технологии с рынка LPWAN.

К наиболее перспективным направлениям построения беспроводных сетей LPWAN относится узкополосный интернет вещей NB-IoT (Narrow Band IoT) на базе LTE, который может быть развернут поверх существующих сетей LTE операторов сотовой связи. Но стратегическим направлением в CIoT являются сотовые сети нового поколения 5G, которые будут поддерживать IoT.

Технология 5G, предназначенная для работы с разнородным трафиком, обеспечит подключение к Интернет разнообразных устройств с разными параметрами (энергопотреблением, скоростями передачи данных и т.д.) как мобильных устройств (смартфонов, телефонов, планшетов и т.д.), так и Smart Objects (sensors or actuators).

Где применяются сети LPWAN? Например, в Нидерландах и в Южной Корее для Internet of Things уже развернута общенациональная сеть LoRa. Сети SigFox для IoT развернуты в Испании и Франции. В России создается национальная сеть "Стриж" для Internet of Things (IoT) и т.д. В настоящее время в качестве стандарта для вычислительных сетей физических предметов LPWAN Интернета вещей IoT рассматриваются стандарты - LoRaWAN и NB-IoT.

Следует отметить, что в Internet of Things (IoT) наряду с использованием облачных технологий применяются технологии «туманных вычислений» (fog computing). Это обусловлено тем, что в облачной модели, используемой в IoT, слабым местом является пропускная способность каналов операторов связи, по которым осуществляется обмен данными между "облаком" и "умными" устройствами вычислительных сетей физических предметов.

Концепция "туманных вычислений" предполагает децентрализацию обработки данных за счет передачи части работы по обработке данных и принятию управленческих решений с "облака" непосредственно устройствам вычислительных сетей физических предметов.

Повышение пропускной способности каналов связи Cloud computing может обеспечить новый подход их построения на основе технологии Software-Defined Networks (SDN). Поэтому внедрение SDN позволит повысить эффективность работы каналов связи Cloud computing и Internet of Things (IoT).

Беспроводные персональные сети (WPAN) передачи данных малого радиуса с низким энергопотреблением - компоненты Internet of Things (IoT)

К сетям WPAN (рис. 1) относятся беспроводные сенсорные сети на основе технологий: 6LoWPAN, Thread, ZigBee IP, Z-Wave, ZigBee, BLE 4.2 (Bluetooth Mesh). Эти сети относятся к mesh-сетям (самоорганизующимся и самовосстанавливающимся сетям с маршрутизацией), которые имеют ячеистую топологию, являются составляющими (компоненнтами) сети Internet of Things (IoT).

Персональные вычислительные сети на основе технологий 6LoWPAN, Thread, ZigBee IP относятся к IP сетям со стеком протоколов 6LoWPAN или IPv6 стеком для 802.15.4 сетей (рис. 3). В них используется сетевой протокол 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks), который является версией протокола IPv6 для беспроводных персональных сенсорных сетей с низким энергопотреблением стандарта IEEE 802.15.4. В качестве протокола маршрутизации используется RPL (Routing Protocol for Low-Power and Lossy Networks).


Рис. 3. 6LoWPAN Protocol Stack для IoT

IEEE 802.15.4 (standards.ieee.org) - это стандарт, который описывает физический IEEE 802.15.4 PHY и канальный уровни сетевой модели OSI. Канальный уровень, состоит из подуровня доступа к среде передачи МАС (Media Access Control) IEEE 802.15.4 MAC и подуровня управления логической связью LLС (Logical Link Control). На базе стандарта IEEE 802.15.4 построено несколько технологий, например, таких как ZigBee IP, Thread, 6LoWPAN.

Стек протоколов 6LoWPAN. Суть работы вычислительных сетей физических объектов в IoT на основе стека протоколов 6LoWPAN состоит в следующем. Например, данные с сенсора поступают на вход микроконтроллера (МК). МК обрабатывает поступающие с сенсора данные на основе прикладной программы (End Nodes Applications), которая создана разработчиком сети на основе API специализированной ОС микроконтроллера.

Для передачи обработанных данных в сеть приложение End Nodes Applications обращается к протоколу прикладного уровня (Application - IoT protocols) стека протоколов ОС микроконтроллера и через стек передает данные на физический уровень сенсора. Далее бинарные данные поступают на вход Border routers (Edge routers). Для передачи данных с End Node через Border routers на Web-сервер (Web-приложению) по прикладному протоколу CoAP, необходимо осуществить согласование сетей на прикладном уровне стека протоколов CoAP-to-HTTP, для этого используют прокси-сервер.

Стек протоколов 6LoWPAN обеспечивает подключение "умных" устройств с низким энергопотреблением к Интернету роутерами, а не специализированными IP шлюзами. Поскольку низкоскоростные сети со стеком протоколов 6LoWPAN для устройств с ограниченными возможностями не являются транзитными сетями для сетевого IP трафика традиционного Интернет, то они являются конечными сетями в Internet of Things (IoT) и подключены к сети Интернет через Border routers или Edge routers. Граничный роутер обеспечивает взаимодействие сети 6LoWPAN с сетью IPv6 путем преобразования заголовков IPv6 и фрагментации сообщений в адаптационном слое стека протоколов (Adaption of 6LoWPAN).

Z-Wave (z-wave.me) - одна из популярных технологий беспроводных сетей Internet of Things (IoT) (стандарт: Z-Wave и Z-Wave Plus). Cеть Z-Wave (рис. 1) с ячеистой топологией (mesh - сеть) и низким энергопотреблением, предназначенная для организации Smart Home. Сетевой протокол Z-Wave стека коммуникационных протоколов Z-Wave реализован компанией Sigma Designs закрытым кодом и является запатентованным. Нижние уровни MAC и PHY включены в стандарт ITU-T G.9959.

Z-Wave насчитывает множество совместимых устройств (sensors and actuators) для создания сети Smart Home. Управлять домашней сетью Z-Wave можно дистанционно с помощью пульта управления через Home Controller, контролировать работу сети можно с ПК и Интернет через смартфон. Сеть Z-Wave подключена к сети Интернет через специализированный IP шлюз Gateway "Z-Wave for IP".

ZigBee (zigbee.org) - это одна из наиболее распространенных технологий для построения беспроводных сетей Internet of Things (IoT) (открытый стандарт ZigBee). Сеть ZigBee с ячеистой топологией (mesh - сеть) имеет свой стек коммуникационных протоколов IEEE 802.15.4/Zigbee, который не поддерживает межсетевой протокол IP. Вычислительная сеть предметов на основе стека ZigBee, для взаимодействия с внешними устройствами, расположенными в IP-сети, подключена к сети Интернет через специализированный IP шлюз Gateway ZigBee. В настоящее время создан новый стандарт ZigBee IPv6.

Сети, созданные на основе нового стандарт Zigbee IPv6, могут быть подключены к IP-сети через роутер, а не специализированный шлюз. Шлюз Gateway ZigBee осуществляет переупаковку данных из одного формата в другой и обеспечивает межсетевое взаимодействие между сетями на основе разнородных технологий MQTT/ZigBee - HTTP/TCP/IP. Технология ZigBee используется как стандарт для автоматического сбора показаний счетчиков электроэнергии абонентов и передачи их на серверы операторов связи (автономные сайты), либо на Internet of Things (IoT) Habs Cloud.

WiFi (www.wi-fi.org) - это набор стандартов беспроводной связи IEEE 802.11, который можно использовать для построения беспроводной локальной вычислительной сети предметов WLAN на основе стека TCP/IP. Стек протоколов стандарта IEEE 802.11 состоит из физического уровня PHY и канального уровня с подуровнями управления доступом к среде MAC и логической передачи данных LLC. Протоколы IEEE 802.11 (WiFi) относятся к уровню сетевых интерфейсов в стеке TCP/IP.

Беспроводная локальная вычислительная сеть предметов WiFi подключена к Internet с помощью роутера (рис. 1). Следует отметить, что для построения локальных беспроводных вычислительных сетей предметов Wi-Fi Alliance создал новую спецификацию IEEE 802.11s, которая обеспечивает технологию построения ячеистых сетей. Кроме того, для Internet of Things (IoT) создан и новый стандарт Wi-Fi HaLow (спецификация IEEE 802.11ah) с низким энергопотреблением.

BLE 4.2 (bluetooth.com) - это новая версия стандарта Bluetooth low energy (Bluetooth LE), которая предназначена для построения беспроводных сетей типа Smart Home. Новый стандарт Bluetooth Mesh с ячеистой топологией будет внедрен к концу 2016г. Стек коммуникационных протоколов BLE 4.2 поддерживает сетевой протокол IPv6 over BLUETOOTH(R) Low Energy или 6LoWPAN, протоколы транспортного (UDP, TCP) и прикладного (COAP и MQTT) уровней.

Версия BLE 4.2 обеспечивает минимальное энергопотребление оборудования и выход в IP-сети. Нижние уровни MAC и PHY стека Bluetooth LE Stack: Bluetooth LE Link Layer и Bluetooth LE Physical. Для обеспечения взаимодействия сетей (BLE 4.2 и Internet) на сетевом уровне (6LoWPAN с IPv6) и прикладном уровне стека протоколов (CoAP с HTTP), сеть BLE 4.2 может быть подключена к сети Интернет (рис. 1) через Border routers и CoAP-to-HTTP Proxy соответственно.

Протоколы прикладного уровня Internet of Things (IoT)

Для передачи данных в Internet of Things (IoT) применяется множество протоколов прикладного уровня, к наиболее распространенным из которых относятся: DDS, MQTT, XMPP, AMQP, JMS, CoAP, REST/HTTP. DDS – это служба распространения данных для систем реального времени является стандартом OMG для промежуточного программного обеспечения. DDS – это базовая технология для реализации IoT, основанная на коммуникационной модели обмена сообщениями DCPS без промежуточного брокера (сервера).

MQTT, XMPP, AMQP, JMS – это протоколы обмена сообщениями, которые основаны на брокере по схеме: publish/subscribe. Брокер (сервер) можно развернуть на облачной платформе или на локальном сервере. Программы-клиенты необходимо установить на приложениях смарт-устройств.

Протокол CoAP (Constrained Application Protocol) - ограниченный протокол передачи данных IoT, аналогичный HTTP, но адаптированный для работы с "умными" устройствами низкой производительности. CoAP основан на стиле архитектуры REST. Доступ к серверам осуществляется по URL-адресу приложения смарт-устройств. Программы-клиенты для доступа к ресурсам использует такие методы, как GET, PUT, POST и DELETE.

REST/HTTP – состоит из двух технологий REST и HTTP. REST - это стиль архитектуры программного обеспечения для распределенных систем. REST описывает принципы взаимодействия приложений смарт-устройств с программными интерфейсами REST API (Web service). Через REST API приложения общаются между собой с помощью четырех HTTP методов: GET, POST, PUT, DELETE. HTTP - протокол передачи гипертекста, является протоколом прикладного уровня для передачи данных. HTTP используется для взаимодействия по схеме Device-to-User. REST/HTTP основан на коммуникационной модели обмена сообщениями req/res.

Для доступа из сетей физических объектов, не поддерживающих IP протокол, к сетям IP и наоборот используются хабы или шлюзы, или IoT платформы, которые обеспечивают согласование протоколов на различных уровнях стека коммуникационных протоколов. Для доступа из сетей физических объектов, поддерживающих IP протокол, к сетям IP и наоборот используются прокси для согласования протоколов прикладного уровня (например, для согласования протоколов CoAP и HTTP).

Наша команда создает приложения для «интернета вещей». Используем AndroidThings, разрабатываем индивидуальные решения.

Интернет вещей (iOT - the Internet of Things) обещает быть новой платформой, которая уже сейчас используется в таких отраслях:

    Транспорт

    Медицина

    Производство

    Ритейл «Умные города» и «умные дома»

    Сельское хозяйство

M2M разработка

IOT разработку еще называют m2m разработкой (Machine-to-Machine). Упрощенно, это система, в которой устройства обмениваются данными между собой без участия человека. Это могут быть системы охраны предприятия, системы «умного дома» или учетная система для логистической компании.

iOT решения и быстрый MVP

IOT - новая отрасль, поэтому проверка продуктовых гипотез должна происходить быстро. В нашей компании процесс разработки построен так, чтобы вы получили MVP как можно быстрее.

Мы работаем по системе SCRUM и используем лучшие практики разработки iOT приложений. Вы всегда в курсе процесса разработки и влияете на функции, которые разрабатываются.

Android Things

Android Things - это операционная система от компании Google, которая основана на операционной системе Android. Android Things поддерживает IntelEdison, IntelJoule, NXPi.MX7DPico, NXPi.MX6ULArgon, NXPi.MX6ULPico, RaspberryPi 3.

Android Things предлагает набор инструментов, которые делают разработку легче и быстрее.

iOT технологии и работа с датчиками

При создании iOT проекта учитываем особенности работы с датчиками, средствами измерения и передачи данных. Предлагаем решения, которые:

    Потребляют мало энергии

    Быстро передают данные

    Отказоустойчивы

    Безопасны

Где будут храниться данные и как они будут использованы?

Сбор данных только часть системы. Важно продумать, где данные будут храниться и как использоваться.

Важная составляющая - протоколы передачи данных.

Как устройства будут общаться между собой и передавать данные. Выбираем эффективное решение, которое учитывает потребление энергии и формат передачи данных.

IOT решения и архитектура проекта строится так, чтобы передача данных и работа с датчиками не была узким местом.

Интересует iOT разработка и iOT технологии? Есть идеи в области интернет вещей? Напишите нам. Наша команда создает приложения под Android Things и предоставляет iot решения.

Требования наших клиентов на стадии оценки проекта

    Успешный опыт разработки проектов для среднего и крупного бизнеса.

    Бизнес-экспертиза при разработке стартапов.

    Команда от 7 специалистов при разработке приложения или веб-сайта.

    Уникальность, никаких типовых решений.

    Срок - разработка от 3-х месяцев.

    Прозрачная система контроля и гибкость в разработке.

    Обоснованная стоимость разработки мобильного приложения

Мы продолжаем рассказывать о компаниях-разработчиках решений (ISV). В этом выпуске технический директор компании «ИНПРОСИСТЕМ» рассказывает об опыте разработки архитектуры охранной IoT-системы СеСМИК .

Многие считают, что понятие «Интернета вещей» неразрывно связано с сетью, которой мы пользуемся каждый день. Можно представить себе картину, где множество устройств, объединенных в единое целое через глобальную сеть, обмениваются данными между собой и серверами и создают цифровую картину мира. В данной статье я расскажу о том, как мы делали систему, объединяющую сотни датчиков.

Понятие «интернет» стоит рассматривать гораздо шире. В данном случае это общая для устройств сеть. Она может содержать 10 устройств, а может и 10 000. Может быть проводная, а может быть беспроводная. Может располагаться в одной комнате, а может охватывать несколько стран. Все зависит от задач, которые ставятся перед системой.

При этом создание даже небольшой сети устройств сопровождается множеством трудностей.

Постановка задачи

Нам была поставлена задача по разработке системы охраны периметра. Периметр - это забор, окружающий некоторый объект. Его длина ничем не ограничена.

Система создавалась с нуля. К моменту начала проектирования существовал прототип датчика, способного собирать колебания периметра, проанализировав которые, можно было четко определить факт преодоления или разрушения забора. Опытным путем мы определили, что датчики нужно ставить примерно через каждые 10 метров.

Кроме датчиков планировались еще управляющие устройства с реле и управляемые устройства с «сухим контактом». Система должна работать в уличных условиях при широком диапазоне температур и погодных явлений.

Итак, имеется:

  • 3 типа устройств;
  • Минимум 100 устройств на километр;
  • Количество километров не ограничено;
  • Система должна иметь уличное исполнение.

Сразу можно выделить главные вопросы по архитектуре:

  • Организация передачи данных и питания;
  • Распределение потоков информации: где и как анализировать данные;
  • Безопасность решения: какие протоколы использовать;
  • Как управлять таким количеством устройств.

Общая схема решения

Изучив различные варианты, мы пришли к выводу, что ни один из протоколов нам не подходит. Некоторые слишком сложны для нашей задачи, некоторые требуют отчислений за использование, а некоторые не поддерживают то, что хотелось бы реализовать.

А реализовать хотелось систему по принципу PlugAndPlay :

  • Подключение и отключение устройств без отключения питания;
  • Автоматическая определение изменения конфигурации системы;
  • Система должна начать работать сразу после сборки
.

В итоге нам удалось сделать то, что было задумано, написав свой простой, но достаточно мощный протокол. Так как речь идет о маленькой пропускной способности шины и небольшой вычислительной мощности микроконтроллеров, то тип протокола был выбран байтовый. Из-за оптимизации пропускной способности протокол получился достаточно сильно связанным с CAN, но нам удалось сделать его теоретически переносимым на другие стандарты.

Протокол позволяет:

  • обнаруживать “на лету” подключенные устройства;
  • обнаруживать отключение устройств;
  • работать в режиме запрос-ответ;
  • передавать асинхронные события;
  • передавать потоковые данные с устройства.

Наладив обмен между устройствами и шлюзом, осталось разобраться с сервером.

Шлюз имеет выход Ethernet . Это наиболее универсальная технология передачи данных. Сеть может быть организована как угодно: оптическими каналами, беспроводными каналами, обычной витой парой - при этом мы всегда сможем подключиться к этой сети, используя оптические конвертеры и точки доступа. Это позволяет заказчику проектировать инфраструктуру сети любой сложности и протяженности.

Передача данных была организована с помощью Сокетов Беркли на базе TCP/IP. Такое решение позволяет серверу гарантированно получать информацию от любого датчика и не зависеть от программных платформ. Протокол поверх TCP/IP мы разработали так же свой. Он тоже байтовый, для оптимизации работы на стороне микроконтроллера. У байтовых протоколов есть большой минус: сложность с последующей модификацией. Однако текстовый протокол для микроконтроллерного устройства слишком избыточен.

Самым сложным с точки зрения разработки ПО оказался сервер. Мы реализовали асинхронную многопоточную модель взаимодействия, что позволило получить “живую” систему, мгновенно реагирующую на любые изменения. Подключение нового устройства, потеря связи со шлюзом, тревога от датчика, открытие крышки на устройства - любое событие в системе мгновенно регистрируется, даже если они происходят одновременно.

В итоге мы получили гибкую модульную систему, управляемую через единый центр - сервер. Он так же имеет свой протокол, позволяющий подключаться к нему и получать события в системе. Это позволяет использовать нашу систему как составную часть большого комплекса и масштабировать ее практически до бесконечности.

Вопросы безопасности

С безопасностью системы оказалось все достаточно просто. Дело в том, что все сети, которые находятся на охраняемых объектах, сами по себе являются охраняемыми объектами. Таким образом все сети, с которыми работает система, становятся “доверенными”.

Кроме того, “цена” взлома информационной системы охраны гораздо выше, чем другие способы преодоления. Иными словами, опытный нарушитель найдет более простой способ преодолеть заграждение, а менее опытный просто не сможет взломать систему.

Поэтому никакими особыми способами защиты информации мы не пользовались, ограничившись только базовыми принципами.

Что дальше?

Несмотря на то, что система уже сформировалась, мы продолжаем активно ее развивать и искать новые способы применения.

Одним из направлений развития системы является машинное обучение. Используя эти алгоритмы, можно отфильтровывать регулярные помехи, такие как шум от грузовиков поездов и самолетов. В экспериментах для этого направления нам очень сильно помогает Azure Machine Learning. Он содержит множество готовых решений для машинного обучения, что позволяет достаточно быстро получить результаты.
Анализ колебаний ограждения далеко не единственный способ использования технологий, заложенных в нашу систему. Контроль вибраций высотных зданий, трубопроводов и газопроводов, хрупких грузов, вибродиагностика турбин и подвижных частей различных конструкций - далеко не полный список возможностей.

Количество датчиков в таких системах будет только возрастать и тут практически не минуем переход к облачным системам на объектах, для которых не запрещено использование интернета.

Очень перспективными нам кажутся новые технологии IoT от Microsoft. Единая платформа Windows теоретически способна сэкономить много времени, так как можно написать общий для разных аппаратных платформ код.

А для обработки данных использовать Azure IoT Suite. По заявлениям разработчиков, он содержит в себе инструменты, позволяющие не только объединять и управлять множеством IoT устройств, но и обрабатывать большие объемы данных с них. Это мы и собираемся проверить в ближайшем будущем.

Заключение

Когда мы начинали разработку системы, понятие “Интернета вещей” еще не набрало такой популярности. Опыта было немного, со многими вещами мы столкнулись в первый раз. Сейчас, когда об этой концепции много пишут и рассказывают, стало ясно, что выбран правильный путь.

Работа была сложной и долгой. Создание первой коммерческой версии системы заняло примерно 3 года. Первый ушел на разработку инженерных образцов отдельных устройств. Еще год был потрачен на разработку системы в целом. Третий год шла доводка и отладка.

За это время мы получили огромный опыт в решении разнообразных инженерных задач. Причем подбор корпусов, кабельной продукции, организация производства и логистики отняли не меньше сил, чем разработка самой системы.

Сейчас система смонтирована и работает на многих объектах в России и зарубежом. Самый крупный из них состоит из нескольких периметров общей протяженностью более 15 км. В проектировании находятся и более масштабные объекты.

Более подробную информацию можно получить на